Introduction to Partial Derivatives

Introduction to Partial Derivatives

In previous lessons, we learned how the derivative \(f'(x)\) gives us the steepness at each point along a function \(f(x)\). In this lesson, we'll discuss how using the concept of a partial derivative we can find the steepness at each point along a surface \(z=f(x,y)\). To find the partial derivative we treat one of the variables as a constant and then take the ordinary derivative of \(f(x,y)\). Using this concept, we can specify how steep a surface \(f(x,y)\) is along the \(x\) direction and along the \(y\) direction at each point along the surface. In other words, for every point along the surface, there is a steepness of the surface associated with both the \(x\) and the \(y\) directions at that point.